Synthesis and characterization of inorganic-organic hybrid polymers based 3-(trimethoxysilyl) propyl methacrylate (TMSPMA) monomers for carbon steel coating applications

H. A. Melati1,*, W. Suratno2, R. Hidayat3, N. Syakir4, F. Fitrilawati4

1Chemistry Education Study Program, Tanjungpura University, Jl. Ahmad Yani, Pontianak, Kalimantan Barat, 78116, Indonesia
2Department of Chemistry, Padjadjaran University, Jl. Raya Jatinangor No. 21 Sumedang, Jawa Barat, Indonesia
3Magnetic and Photonic of Physics, Faculty of Mathematic and Natural Science, Institute of Technology Bandung, Jl. Ganesha, Bandung, Indonesia
4Department of Physics, Padjadjaran University, Jl. Raya Jatinangor No. 21 Sumedang, Jawa Barat, Indonesia
*Corresponding author: melati_annida@yahoo.com

Abstract

The synthesis and characterization of inorganic-organic hybrid polymers based 3-(Trimethoxysilyl) propyl methacrylate (TMSPMA) monomers for carbon steel coating application has been done. This materials was used as a coating on carbon steel to protect from corrosion against. Hybrid polymer precursors were synthesized from TMSPMA monomers using sol-gel technique. Hybrid polymers conversion is done by photopolymerization section where resulting the transparent thin films in which various types of substrates. Characterization has been done towards structure, mechanical, thermal properties of hybrid polymers. The carbon steel surface morphology examined by scanning electron microscope. Infrared spectra of hybrid polymers showed the presence of inorganic and organic clusters which get into polymerization. Characterization of mechanical properties based on Mohs Scale revealed that the scratch resistance equivalent to the gypsum mineral. The thermal resistance characterization based on Thermal Gravimetry-Differential Thermal Analysis (TG-DTA) measurements shows result of TG in the sort of decomposition of hybrid polymers at 251.64-350.61°C with 14.57% lost of weight, whereas the results of DTA shows the peak at 155.75°C. This thermal resistance offered an exothermic effect related to the recrystallization reaction indicating a change of structure which was more stable. Based on examination of surface morphology, it appears that the surface morphology of the hybrids polymers provide a smooth surface covered the carbon steel as a coating and it does not change the physical character of carbon steel.

Keywords: characterization, coating, hybrid polymers, photopolymerization, sol-gel

Introduction

Coatings have been used extensively to provide protection and prevention of corrosion on metal surfaces, so the coating material requires some properties, such as mechanical strength and hydrophobicity (Chou, 2001). One type of materials was being developed as a coating is hybrid polymers. These polymers combine the superior properties between inorganic and organic materials. Development using of this material is to strengthen the organic polymers coating systems such as polianilin (PANI) which has less adhesivity and difficulties in film deposition (Sekine \textit{et al.}, 1992) therefore polyethylene (PE) which is easy to be cracks due to corrosion and low not only chemical but also thermal stability (Sulistijono, 2008). For this application, hybrid polymers coating can be replace the system of chromat coating according to the current legislation on environmental stresses due to the ban on the use of toxicity (Schottner, 2001; Chou, 2001).

Commonly, hybrid polymers show excellent adhesion to various metals and glass by sol-gel reaction and then used as an adhesive material. The combination of barrier function and good properties of adhesion is a prerequisite for the coatings on metals in providing corrosion resistance properties (Haas, 2000). Low temperature conditions in the sol-gel process and its speed makes it possible to do the roll coating process for applications and a thin film on a metal sheet (Schottner, 2001; Chou, 2001). Based on the literature review, hybrid inorganic-organic polymers have been used as a coating to protect steel and other metals from corrosion attack. Souza \textit{et al.} (2001) makes organic-inorganic hybrid polymers from tetraethylorthosilicate (TEOS) and polydimethylmethoxysilane (PDMS) as a coating on the substrate steel and galvanized steel electrolysis with iron-zinc coating. Ramesh (2008) makes the siloxane coating system of polyester resin that gives