Effect of nanocomposite packaging based chitosan nanoparticle on quality coffee beans during storage

Achmad Ridwan

Dept of chemistry, State University of Jakarta

Abstract

The objective of this study was to evaluate the quality of green coffee beans (Coffea arabica L.) during storage in nanopackaging. A novel nanocomposite-based packaging (NCP) was prepared by blending polyethylene (PE) with nano-Ag, chitosan nanoparticle and montmorillonite. The effects of NCP on the quality parameters of water content, weight loss and color treated coffee beans were investigated during the 21 d of storage at 25 °C. The results showed that adding nanoparticles to the PE significantly decreased the oxygen, water vapor permeability and longitudinal strength. The weight loss, water content, color variation and proximate content of coffee bean were significantly inhibited by 22.67%, 124.84%, 23.46% and 14.42% respectively. The results of this analysis demonstrated that this NCP can potentially increase the effectiveness of methods used to preserve and maintain quality in coffee beans during postharvest storage.

Introduction

Coffee is one of the most widely consumed beverages in the world because it contains a wide range of aroma compounds, which is a very important factor in food quality (Kumazawa and Masuda, 2003). Coffee beans are obtained from the plants Coffea arabica and Coffea canephora (mainly variety robusta). The former is more valuable because its beans produce a better tasting beverage, which is therefore more expensive than the robusta coffee (Zambonin, et al. 2005).

Coffee is an agricultural product with a quality-based price. The value of coffee increases significantly with improvements in quality, which are necessary to obtain new markets. During roasting, the taste and aroma of coffee develop from ingredients original in raw beans. Taste and aroma are the principal factors affecting beverage quality. Storage is one of the stages following production that strongly influences the commercialization of coffee beans. Storage is thereby considered one of the most important factors for maintaining final product quality, meeting between-harvest demand, and securing the best market price for the producer.

Traditionally, green coffee beans have been stored in jute sacks. Jute is most frequently used because it is readily adaptable to smallscale commerce and because it is easily sampled for lot inspections. Elevated operational costs that result from the need for manual handling represent one disadvantage of storage in jute sacks. Another disadvantage is rapid deterioration in quality when the beans are stored in warehouses without ambient air control. Containers called “big bags” represent another form of storage used in Brazilian warehouses. The ease of mechanized handling, along with operational economies of scale, represent the principal advantages offered by this method of storage. However, big bags, like jute sacks, have the disadvantage of being permeable to water vapor and to gases present in ambient air, affecting the color and the organoleptic properties of the beans (Borém, et al., 2008) and Nobre et al. (2007) have stated that storage in hermetically sealed systems that permit atmospheric modification or control represents a viable alternative for preserving coffee bean quality. Certain additional costs are acceptable for the preservation of quality in select coffees of higher value.

Recently, the application of the nanocomposite concept has been proven to be a promising option in order to improve above mentioned properties conveniently (Azeredo, 2009). It is worth emphasizing many diverse characteristics existed in nanocomposites including composite reinforcement, barrier properties, flame resistance, electro-optical properties, cosmetic applications and bactericidal properties.


Microbial growth rate in orange juice were significantly reduced as a result of using packaging material containing Ag and ZnO nanoparticles, which prolonged the shelf life of fresh orange juice up to 28 days without any negative effects on sensorial parameters (Emamifar, et al. 2010). Our previous study also showed that the nano-packaging...